N-Acetylglucoseamine modified alginate sponges as scaffolds for skin tissue engineering
نویسندگان
چکیده
منابع مشابه
Surface modified cellulose scaffolds for tissue engineering
We report the ability of cellulose to support cells without the use of matrix ligands on the surface of the material, thus creating a two-component system for tissue engineering of cells and materials. Sheets of bacterial cellulose, grown from a culture medium containing Acetobacter organism were chemically modified with glycidyltrimethylammonium chloride or by oxidation with sodium hypochlorit...
متن کاملCollagen–based scaffolds for skin tissue engineering
The aim of this study was to obtain four collagen based porous scaffolds and to assess their in vitro biocompatibility and biodegradability in order to use them for skin tissue engineering. We have prepared four variants of collagen-based biodegradable sponges by liophilization of type I collagen solution and three variants of collagen-agarose mixture in different ratios 2:1 (A), 1:1 (B) and 1:...
متن کاملAligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering
Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL), poly (vinyl alcohol) (PVA) and hydroxyapatite nanoparticles (nHA). The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...
متن کاملCalcium/Cobalt Alginate Beads as Functional Scaffolds for Cartilage Tissue Engineering
Articular cartilage is a highly organized tissue with complex biomechanical properties. However, injuries to the cartilage usually lead to numerous health concerns and often culminate in disabling symptoms, due to the poor intrinsic capacity of this tissue for self-healing. Although various approaches are proposed for the regeneration of cartilage, its repair still represents an enormous challe...
متن کاملElectrospun chitosan-alginate nanofibers with in situ polyelectrolyte complexation for use as tissue engineering scaffolds.
Electrospun natural biopolymers are of great interest in the field of regenerative medicine due to their unique structure, biocompatibility, and potential to support controlled release of bioactive agents and/or the growth of cells near a site of interest. The ability to electrospin chitosan and alginate to form polyionic complexed nanofibrous scaffolds was investigated. These nanofibers crossl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TURKISH JOURNAL OF BIOLOGY
سال: 2017
ISSN: 1300-0152,1303-6092
DOI: 10.3906/biy-1704-31